Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

Completed Technology Project (2014 - 2016)

Project Introduction

A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical objectives are: 1. A transducer element capable of surviving temperatures from -135?C to +125?C. 2. The transducer element in objective 1 with temperature compensation to minimize span and offset drift from -80?C to +70?C. 3. The transducer element in objective 2 constructed so that it will sense properly in an atmospheric vacuum of 1E-5 torr. 4. The transducer element in objective 3 made of low-outgassing materials that are compatible with an interplanetary sample-collecting mission. 5. The transducer element in objective 4 instrumented with redundant sets of strain gages. In order to achieve the objectives, ATI Industrial Automation has divided the project into these tasks: * Six degree of freedom transducer design and fabrication, * Load fixture design and fabrication, * Instrumentation and temperature compensation of transducers - using semiconductor strain gages and - using metal-foil strain gages, * Calibration of instrumented beams and redundant instrumentation, * Performance characterization of both transducer instrumentation types at temperature and vacuum.

Primary U.S. Work Locations and Key Partners

Six-Axis Force-Torque Transducer for Mars 2018 Mission Project Image

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	3
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

Completed Technology Project (2014 - 2016)

Organizations Performing Work	Role	Туре	Location
ATI Industrial	Lead	Industry	Apex, North
Automation, Inc.	Organization		Carolina
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California

Primary U.S. Work Locations		
California	North Carolina	

Images

Project Image

Six-Axis Force-Torque Transducer for Mars 2018 Mission Project Image (https://techport.nasa.gov/imag e/131558)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ATI Industrial Automation, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Dwayne Perry

Co-Investigator:

Dwayne Perry

Small Business Innovation Research/Small Business Tech Transfer

Six-Axis Force-Torque Transducer for Mars 2018 Mission, Phase II

Completed Technology Project (2014 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

